
1
1
QUICKDRAW PRELIMINARIES
 Demonstration Program: PreQuickDraw

QuickDraw and Imaging
QuickDraw is a collection of system software routines that your application uses to perform imaging
operations, that is, the construction and display of graphical information for display on output devices such
as screens and printers.
This chapter serves as a prelude to Chapter 12, and introduces certain matters which need to be discussed
before the matter of actually drawing with QuickDraw is addressed. These matters include RGB colours,
colour and the video device, the graphics port, translation of RGB values, and graphics devices.

RGB Colours and Pixels
In QuickDraw, colours are specified as RGB colours using an RGBColor structure:

struct RGBColor
{
 unsigned short red; // Magnitude of red component.
 unsigned short green; // Magnitude of green component.
 unsigned short blue; // Magnitude of blue component.
};
typedef struct RGBColor RGBColor;

Note that an RGB colour is defined by three components (red, green and blue). When the red, green and
blue fields of the RGBColor structure are assigned the maximum possible value (0xFFFF), the resulting colour
is white. When these fields are assigned the minimum value (0x0000), the resulting colour is black.
A pixel (picture element) is the smallest dot that QuickDraw can draw. Each colour pixel represents up to
48 bits in memory.

QuickDraw Preliminaries Version 1.0 11-1

Colour and the Video Device
QuickDraw supports a variety of screens of differing sizes and colour capabilities, and is thus device-
independent. Accordingly, you do not have to concern yourself with the capabilities of individual screens.
For example, when your application uses an RGBColor structure to specify a colour by its red, green and blue
components, with each component defined in a 16-bit integer, QuickDraw compares the resulting 48-bit
value with the colours actually available on a video device (such as a plug-in video card or a built-in video
interface) at execution time and then chooses the closest match. What the user finally sees depends on the
characteristics of the actual video device and screen.
The video device that controls a screen may have either:

 Indexed colours, which support pixels of 1-bit, 2-bit, 4-bit, or 8-bit pixel depths1. The indexed
colour system was introduced with the Macintosh II, that is, at a time when memory was scarce and
moving megabyte images around was quite impractical.

 Direct colours, which support pixels of 16-bit and 32-bit depths. Most video devices in the current
day are direct colour devices. (However, as will be seen, there are circumstances in which a direct
colour device will act like an indexed colour device.)

QuickDraw automatically determines which method is used by the video device and matches your
requested 48-bit colour with the closest available colour.

Indexed Colour Devices
Video devices using indexed colours support a maximum of 256 colours at any one time, that is, with
indexed colour, the maximum value of a pixel is limited to a single byte, with each pixel's byte specifying
one of 256 different values.
Video devices implementing indexed colour contain a data structure called a colour lookup table
(CLUT), which contains entries for all possible colour values. Most indexed video devices use a variable
CLUT, which allows your application to load the CLUT with different sets of colours depending on the
image being displayed.
When your application uses a 48-bit RGBColor structure to specify a colour, the Color Manager compares the
CLUT entries on the video device with the specified RGBColor colour, determines which colour in the CLUT
is closest, and passes QuickDraw the index to this colour. This is the colour that QuickDraw draws with.
Fig 1 illustrates this process.

FIG 1 - INDEXED COLOUR SYSTEM

APPLICATION

QUICKDRAW COLOR
MANAGER

GDevice STRUCTURE
COLOUR TABLE

CLUT
COLOUR TABLE R

G
B

VIDEO RAM

1 2
3

4

5
5

VIDEO CARD

1. The application calls a QuickDraw routine to draw an object
in a colour specified in an RGBColor structure.
2. QuickDraw calls the Color Manager to ascertain which
colour in the device's CLUT is closest to the requested colour.
3. The index value representing the best match is returned to Color QuickDraw.
4. QuickDraw puts the index value in the appropriate places in video RAM.
5. The video device continually displays video RAM by taking the index values,
converting them to colours according to the CLUT entries at those indexes, and
sending them to the screen via digital-to-analog converters.

Note: The system creates and initialises a GDevice structure for each video
device found during startup. The colour table within this structure is kept
synchronised with the video card's CLUT.

See note

Direct Colour Devices
Video devices which implement direct colour eliminate the competition for limited colour lookup table
spaces and remove the need for colour table matching. By using direct colour, video devices can support
thousands or millions of colours.

1 Pixel depth means the number of bits assigned to each pixel, and thus determines the maximum number of colours that can
be displayed at the one time. A 4-bit pixel depth, for example, means that an individual pixel can be displayed in any one of
16 separate colours. An 8-bit pixel depth means that an individual pixel can be displayed in any one of 256 separate colours.

11-2 Version 1.0 QuckDraw Preliminaries

When you specify a colour using a 48-bit RGBColor structure on a direct colour system, QuickDraw
truncates the least significant bits of its red, green and blue components to either 16 bits (five bits each for
red, green and blue, with one bit unused) or 32 bits (eight bits for red, green and blue, with eight bits
unused). (See Translation of RGB Colours to Pixel Values, below.) Using 16 bits, direct video devices
can display 32,768 different colours. Using 32 bits, the device can display 16,777,215 different colours
Fig 2 illustrates the direct colour system.

FIG 2 - DIRECT COLOUR SYSTEM

R
G

VIDEO CARD

B

APPLICATION

QUICKDRAW

VIDEO RAM

1

3

4

1. The application calls a QuickDraw routine to draw an object
in a colour specified in an RGBColor structure.
2. QuickDraw knows from the GDevice structure that the screen is
controlled by a direct device in which pixels are, say, 32 bits deep,
which meens that eight bits are used for each of the red, green, and
blue components of the requested colour.
3. Accordingly, QuickDraw passes the high eight bits from each 16-bit component
of the 48-bit RGBColor structure to the video device, which stores the resulting
24-bit value in video RAM for the object.

GDevice STRUCTURE

32-BIT PixMap
STRUCTURE

2

4. The video device continually displayes video RAM by sending the 8-bit red,
green, and blue values for the colour to digital-to-analog converters which produce a
signal for the screen

Direct colour not only removes much of the complexity of the CLUT mechanism for video device
developers, but also allows the display of thousands or millions of colours simultaneously, resulting in
near-photographic resolution.

Direct Devices Operating Like Indexed
Devices

Note that, when a user sets a direct colour device to use 256 colours (or less) as either a grayscale or colour
device, the direct device creates a CLUT and operates like an indexed device.

Graphics Port
A graphics port2 defines a complete drawing environment. Amongst other things, a graphics port:

 Contains a handle to a pixel map which, in turn, contains a pointer to the area of memory in which
your drawing operations take place.

 Contains a metaphorical graphics pen with which to perform drawing operations. (You can set this
pen to different sizes, patterns and colours.)

 Holds information about text, which is styled and sized according to information in the graphics
port.

The information in a graphics port is maintained by QuickDraw.
The graphics port is an opaque data structure. The data types CGrafPtr and GrafPtr are defined as pointers to
such objects:

typedef struct OpaqueGrafPtr* GrafPtr;
typedef GrafPtr CGrafPtr;

Accessor Functions
Accessor functions are provided to access the information in colour graphic port objects. The main
accessor functions are as follows:

Accessor Description

2 The term "graphics port" originally pertained to the one-bit graphics port used by the early black-and-white Macintoshes.
The colour graphics port was introduced when colour came to the Macintosh with the Macintosh II. In the Carbon era, the
black-and-white graphics port is irrelevant. Accordingly, where the term "graphics port" is used in this book, a colour
graphics port should be assumed unless otherwise stated.

QuickDraw Preliminaries Version 1.0 11-3

Function
GetPortPixMap Get a handle to the graphics port's pixel map
GetPortBounds
SetPortBounds

Get and set the graphics port rectangle.
Your application's drawing operations take place inside the port rectangle (which, for a
window's graphics port is also called the content region.)
The port rectangle uses a local coordinate system in which the upper-left corner of the port
rectangle has a vertical coordinate of 0 and a horizontal coordinate of 0.

GetPortVisRegion
SetPortVisRegion

Get and set the visible region.
The visible region (which, by default, is equivalent to the port rectangle) is the region of the
graphics port that is actually visible on screen (see Fig 3).

GetPortClipRegion
SetPortClipRegion
SetClip

Get and set the clipping region.
The clipping region is an arbitrary region used to limit drawing to any region within the port
rectangle. The default clipping region is set arbitrarily large; however, your application can
change this. At Fig 3, for example, SetPortClipRegion (or ClipRect) has been used to change
Window B's clipping region so as to prevent the scroll bar areas being over-drawn.

FIG 3 - VISIBLE REGION AND CLIPPING REGION

TWO COLOUR GRAPHICS
PORTS

VISIBLE REGION OF
WINDOW A

MODIFIED CLIPPING REGION
OF WINDOW B

WINDOW AWINDOW A

WINDOW B

GetPortForeColor
RGBForeColor

Get and set the foreground colour.
These functions get and set an RGBColor structure that contains the requested foreground
colour. By default, the foreground colour is black.

GetPortBackColor
RGBBackColor

Get and set the background colour.
These functions get and set an RGBColor structure that contains the requested background
colour. By default, the backgroundground colour is white.

GetPortBackPixPat
SetPortBackPixPat
BackPixPat
BackPat

Get and set the background pixel pattern.
These functions get and set a handle to a PixPat structure (see below) that describes the
background pixel pattern. Various QuickDraw functions use this pattern for filling scrolled
or erased areas.

GetPortPenPixPat
SetPortPenPixPat
PenPixPat
PenPat

Get and set the pen pixel pattern.
These functions get and set a handle to a PixPat structure (see below) that describes the pixel
pattern used by the graphics pen for drawing lines and framed shapes, and for painting
shapes.

GetPortFillPixPat Get the fill pixel pattern.
This function gets a handle to a PixPat structure (see below) that describes the pixel pattern
used when you call QuickDraw shape filling functions.

GetPortPenLocation
MoveTo

Get and set the pen location.
The pen location is the point where QuickDraw will begin drawing the next line, shape, or
character. It can be anywhere on the coordinate plane.

GetPortPenSize
SetPortPenSize
PenSize

Get and set the pen size.
Pen size is the vertical height and horizontal width of the graphics pen. The default size is a
1-by-1 pixel square. If either the pen width or height is 0, the pen does not draw.

GetPortPenMode
SetPortPenMode
PenMode

Gets and sets the pen transfer mode.
The pen transfer mode is a Boolean or arithmetic operation that determines how QuickDraw
transfers the pen pattern to the pixel map during drawing operations. (See Chapter 12.)

HidePen/ShowPen
GetPortPenVisibility

Gets and sets pen visibility.
The pen's visibility means whether it draws on the screen.

GetPortTextFont
TextFont

Get and set the font number for text.
These functions get and set a font family ID, that is, anumber that identifies the font to be
used in the graphics port.

GetPortTextSize
TextSize

Get and set the text size.
The text size is expressed in pixels, and is used by the Font Manager to provide the bitmaps
for text drawing.

11-4 Version 1.0 QuckDraw Preliminaries

GetPortTextFace
TextFace

Get and set the text style.
The style of the text means, for example, bold, italic, and/or underlined.

GetPortTextMode
TextMode

Get and set the text mode.
The text mode is the transfer mode for text drawing, which functions much like the transfer
mode specified in the pnMode field (see above).

HiliteColor Get the highlight colour. (The highlight colour is copied to the graphics port from the low
memory global HiliteRGB.)

You can open many graphics ports at the same time. Each has its own local coordinate system, drawing
pattern, background pattern, pen size and location, foreground colour, background colour, pixel map, etc.
You can instantly switch from one graphics port to another using the functions SetPort, SetPortDialogPort, and
SetPortWindowPort.
When you use Window Manager and Dialog Manager functions to create windows, dialogs, and alerts,
those managers automatically create graphics ports for you

Pixel Maps
QuickDraw draws in a pixel map. The graphics port object contains a handle to a pixel map, which is a
data structure of type PixMap. A PixMap structure contains a pointer to a pixel image, as well as information
on the image's storage format, depth, resolution, and colour usage. The PixMap structure is as follows:

struct PixMap
{
 Ptr baseAddr; // Pointer to image data.
 short rowBytes; // Flags, and bytes in a row.
 Rect bounds; // Boundary rectangle.
 short pmVersion; // Pixel Map version number.
 short packType; // Packing format.
 long packSize; // Size of data in packed state.
 Fixed hRes; // Horizontal resolution in dots per inch.
 Fixed vRes; // Vertical resolution in dots per inch.
 short pixelType; // Format of pixel image.
 short pixelSize; // Physical bits per pixel.
 short cmpCount; // Number of components in each pixel.
 short cmpSize; // Number of bits in each component.
 long planeBytes; // Offset to next plane.
 CTabHandle pmTable; // Handle to a colour table for this image.
 long pmReserved; // (Reserved.)
};
typedef struct PixMap PixMap,*PixMapPtr,**PixMapHandle;

Field Descriptions
baseAddr In the case of an onscreen pixel image, a pointer to the first byte of the image data. Note

that there can be several pixel maps pointing to the same pixel image, each imposing its own
coordinate system on it.
A pixel image is analogous to the bit image. A bit image is a collection of bits in memory
that form a grid. Fig 4 illustrates a bit image, which can be visualised as a matrix of rows
and columns of bits with each row containing the same number of bytes. Each bit
corresponds to one screen pixel. If a bit's value is 0, its screen pixel is white; if the bit's
value is 1, the screen pixel is black. A pixel image is essentially the same as a bit image,
except that a number of bits, not just one bit, are assigned to each pixel. The number of bits
per pixel in a pixel image is called the pixel depth.

QuickDraw Preliminaries Version 1.0 11-5

FIG 4 - A BIT IMAGE

8 BITS
FIRST BYTE

LAST BYTE

rowBytes The offset in bytes from one row of the image to the next.

bounds Mac OS 8/9
On Mac OS 8/9,the boundary rectangle defines the area of the pixel image into which
QuickDraw can draw and provides the link between the local coordinate system of a
graphics port and QuickDraw's global coordinate system. All drawing in a graphics port
occurs in the intersection of the boundary rectangle and the port rectangle (and, within that
intersection, all drawing is cropped to the graphics port's visible region and its clipping
region).
As shown at Fig 5, on Mac OS 8/9, QuickDraw assigns the entire screen as the boundary
rectangle. The boundary rectangle shares the same local coordinate system as the port
rectangle of the window.

FIG 5 - LOCAL AND GLOBAL COORDINATE SYSTEMS, THE BOUNDARY RECTANGLE AND THE PORT
RECTANGLE - MAC OS 8/9

BOUNDARY RECTANGLE PORT RECTANGLE

(h=0,v=0) IN GLOBAL COORDINATES

(h=70,v=60) IN GLOBAL COORDINATES
(h=0,v=0) IN LOCAL COORDINATES

UPPER LEFT
CORNER OF
BOUNDARY
RECTANGLE:
h = - 70,v = - 60
IN LOCAL
COORDINATES

GLOBAL ORIGIN

WINDOW ORIGIN

- h

+ v

v

- v

+ h

h

You should not, incidentally, use the bounds field to determine the size of the screen;
instead, use the gdRect field of the GDevice structure (see below).

Mac OS X

11-6 Version 1.0 QuckDraw Preliminaries

On Mac OS X, this field contains the bounds of the Core Graphics window that backs the
Carbon window, and different mechanisms are employed to determine where the window's
pixel map should be drawn.

pmVersion The QuickDraw version number that created this PixMap structure.
packType The packing algorithm used to compress the image data.
packSize The size of the packed image.
hRes The horizontal resolution of the pixel image in pixels per inch, abbreviated as dpi (dots per

inch). By default, the value here is 0x00480000 (for 72 dpi), but QuickDraw supports
PixMap structures of other resolutions. For example, PixMap structures for scanners can have
dpi resolutions of 150, 200, 300, or greater.

vRes The vertical resolution. (See hRes).
pixelType The storage format. 0 indicates indexed pixels. 16 (RGBDirect) indicates direct pixels.
pixelSize The number of bits used to represent a pixel.
cmpCount The number of components used to represent a colour for a pixel. For indexed pixels, this

field contains 1. For direct pixels this field contains the value 3.
cmpSize The size of each colour component. For indexed devices, this is the same value as that in

the pixelSize field. For direct devices, each of the three colour components can be either 5
bits for a 16-bit pixel (one of these 16 bits is unused), or 8 bits for a 32 bit pixel (8 of these
32 bits are unused). (See Translation of RGB Colours to Pixel Values, below.)

planeBytes Multiple-plane images are not supported, so the value of this field is always 0.
pmTable A handle to the ColorTable structure. ColorTable structures define the colours available for

pixel images on indexed devices. Pixel images on direct devices do not need a colour table
because the colours are stored right in the pixel values. In the case of direct devices,
pmTable points to a dummy colour table.

Functions
Carbon introduced the following functions relating to pixel maps:

Function Description
GetPixBounds Get the pixel map's boundary rectangle.
GetPixDepth Gets the pixel map's pixel depth.

Pixel Patterns and Bit Patterns
Pixel Patterns

The graphics port object stores handles to pixel patterns, structures of type PixPat.
Pixel patterns, which define a repeating design, can use colours at any pixel depth, and can be of any width
and height that is a power of 2. You can create your own pixel patterns in your program code, but it is
usually more convenient to store them in resources of type 'ppat'. Fig 6 shows an 8-by-8 pixel 'ppat'
resource being created using Resorcerer.

QuickDraw Preliminaries Version 1.0 11-7

FIG 6 - CREATING A 'ppat' RESOURCE USING RESORCERER

Bit Patterns
Bit patterns date from the era of the black-and-white Macintosh, but may be stored in a colour graphics
port object. (PixPat structures can contain bit patterns as well as pixel patterns.) Bit patterns are defined in
data structures of type Pattern, a 64-pixel image of a repeating design organised as an 8-by-8 pixel square.
Five bit patterns are pre-defined as QuickDraw global variables. The five pre-defined patterns are
available not only through the QuickDraw globals but also as system resources. Fig 7 shows images drawn
using some of the 38 available system-supplied bit patterns.

FIG 7 - RECTANGLES DRAWN USING BIT PATTERNS IN THE SYSTEM RESOURCE FILE

 RECTANGLES DRAWN WITH OTHER BIT PATTERNS IN THE SYTEM RESOURCE FILE

white black dkGray gray ltGray
 RECTANGLES DRAWN WITH BIT PATTERNS PRE-DEFINED AS QUICKDRAW GLOBAL VARIABLES

You can create your own bit patterns in your program code, but it is usually more convenient to store them
in resources of type 'PAT ' or 'PAT#'. Fig 8 shows a 'PAT ' resource being created using Resorcerer, together
with the contents of the pat field of the structure of type Pattern that is created when the resource is loaded.

FIG 8 - CREATING A 'PAT ' RESOURCE USING RESORCERER

pat[0] = 10001000 = 0x88
pat[1] = 01000100 = 0x44
pat[2] = 00100010 = 0x22
pat[3] = 00010001 = 0x11
pat[4] = 10001000 = 0x88
pat[5] = 01000100 = 0x44
pat[6] = 00100010 = 0x22
pat[7] = 00010001 = 0x11

Creating Graphics Ports
Your application creates a (colour) graphics port using either the GetNewCWindow, NewCWindow, or
NewGWorld function. These functions automatically call CreateNewPort, which opens the port.

11-8 Version 1.0 QuckDraw Preliminaries

Translation of RGB Colours to Pixel Values
As previously stated, the graphics port object contains a pointer to the beginning of the onscreen pixel
image. When your application specifies an RGB colour for a pixel in the pixel image, QuickDraw
translates that colour into a value appropriate for display on the user's screen. QuickDraw stores this value
in the pixel. The pixel value is a number used by system software and a graphics device to represent a
colour. The translation from the colour you specify in an RGBColor structure to a pixel value is performed at
the time you draw the colour. The process differs for direct and indexed devices as follows:

 When drawing on indexed devices, QuickDraw calls the Color Manager to supply the index to the
colour that most closely matches the requested colour in the current device's CLUT. This index
becomes the pixel value for that colour.

 When drawing on direct devices, QuickDraw truncates the least significant bits from the red, green
and blue fields of the RGBColor structure. The result becomes the pixel value that QuickDraw sends
to the graphics device.

Your application never needs to handle pixel values. However, to clarify the relationship between RGBColor
structures and the pixels that are actually displayed, the following presents some examples of the derivation
of pixel values from RGBColor structures.

Derivation of Pixel Values on Indexed Devices
Fig 9 shows the translation of an RGBColor structure to an 8-bit pixel value on an indexed device.

FIG 9 - TRANSLATING AN RGBColor STRUCTURE TO AN 8-BIT PIXEL VALUE ON AN INDEXED DEVICE

160

162

RGBColor STRUCTURE
INDEX NUMBERS

CLUT
0

161

R G B
0x32060x90380x013D

PIXEL VALUE (161) 255

CLOSEST
COLOUR MATCH
IS AT TABLE
ENTRY 161

0x3333 0x9999 0x0000

1rgbFgColor or rgbBkColor
field of CGrafPort structure

fgColor or bkColor field
of CGrafPort structure

An application might call GetCPixel to determine the colour of a pixel set by the pixel value at Fig 9. As
shown at Fig 10, the Color Manager uses the pixel value (an index number) to find the RGBColor structure
stored in the CLUT for that pixel's colour. This is the colour returned by GetCPixel. As shown at Fig 10,
this is not necessarily the exact colour first specified.

FIG 10 - TRANSLATING AN 8-BIT PIXEL VALUE ON AN IDEXED DEVICE TO AN RGBColor STRUCTURE

RGBColor STRUCTURE
INDEX NUMBERS

CLUT
0

161

R G B
0x33330x99990x0000

PIXEL VALUE (161) 255

0x3333 0x9999 0x0000

1

160

162
fgColor or bkColor field
of CGrafPort structure

GetCPixel

Derivation of Pixel Values on Direct Devices
Fig 11 shows how QuickDraw converts an RBGColor structure into a 16-bit pixel value on a direct device.
The most significant 5 bits of each field of the RGBColor structure are stored in the lower 15 bits of the pixel
value. The high bit is unused. Fig 11 also shows how QuickDraw expands a 16-bit pixel value to a 48-bit
RGBColor structure. Each 5-bit component, and the most significant bit, are inserted into each 16-bit field
of the RGBColor structure. Note the difference between the result and the original 48-bit value.

QuickDraw Preliminaries Version 1.0 11-9

FIG 11 - TRANSLATING AN RGBColor STRUCTURE TO A 16 BIT PIXEL VALUE, AND FROM A 16-BIT PIXEL VALUE TO AN RGBColor
STRUCTURE, ON A DIRECT DEVICE

16-BIT RED COMPONENT
0x3206

16-BIT GREEN COMPONENT
0x9038

16-BIT BLUE COMPONENT
0x013D

(UNUSED)

0x318C 0x9495 0x0000

R 0x06 G 0x12 B 0x00

rgbFgColor or
rgbBkColor field of
CGrafPort structure

fgColor or bkColor
field of CGrafPort
structure

GetCPixel

Fig 12 shows how QuickDraw converts an RBGColor structure into a 32-bit pixel value on a direct device.
The most significant 8 bits of each 16-bit field of the RGBColor structure are stored in the lower 3 bytes of
the pixel value. 8 bits in the high byte of the pixel value are unused. Fig 12 also shows how QuickDraw
expands a 32-bit pixel value to an RBGColor structure. Each of the 8-bit components is doubled. Note the
difference between the result and the original 48-bit value.

FIG 12 - TRANSLATING AN RGBColor STRUCTURE TO A 32 BIT PIXEL VALUE, AND FROM A 32-BIT PIXEL VALUE TO AN RGBColor
STRUCTURE, ON A DIRECT DEVICE

16-BIT RED COMPONENT
0x3206

16-BIT GREEN COMPONENT
0x9038

16-BIT BLUE COMPONENT
0x013D

B 0x01(UNUSED)

0x3232 0x9090 0x0101

R 0x32 G 0x90

rgbFgColor or
rgbBkColor field of
CGrafPort structure

fgColor or bkColor
field of CGrafPort
structure

GetCPixel

Colours on Grayscale Screens
When QuickDraw displays a colour on a grayscale screen, it computes the luminance, or intensity of light,
of the desired colour and uses that value to determine the appropriate gray value to draw.
A grayscale device can be a graphics device that the user sets to grayscale. For such a graphics device,
Colour QuickDraw places an evenly spaced set of grays in the graphics device's CLUT.

Graphics Devices and GDevice Structures
As previously stated, QuickDraw provides a device-independent interface. Your application can draw
images in the graphics port for a window and QuickDraw automatically manages the path to the screen —
even if the user is using multiple screens. QuickDraw communicates with a video device, such as a plug-in
video card or a built-in video interface, by automatically creating and managing a structure of type GDevice.

Types of Graphics Device
A graphics device is anything QuickDraw can draw into. There are three types of graphics device:

 Video devices, which control screens.

 Offscreen graphics worlds. (See Chapter 13.)

 Printing graphics ports. (See Chapter 15.)

In the case of a video device for an offscreen graphics world, QuickDraw automatically creates, and stores
state information in, a GDevice structure.

11-10 Version 1.0 QuckDraw Preliminaries

GDevice Structure
QuickDraw creates and initialises a GDevice structure for each video device found during startup.
QuickDraw also automatically creates a GDevice structure when you call NewGWorld to create an offscreen
graphics world.
A list called a device list links together all existing GDevice structures. The current device, which is
sometimes called the active device, is that device in the device list into which drawing is currently taking
place.
Your application generally never needs to create GDevice structures; however, in may need to examine
GDevice structures to determine the capabilities of the user's screens. The GDevice structure is as follows:

struct GDevice
{
 short gdRefNum; // Reference Number of Driver.
 short gdID; // Client ID for search procedures.
 short gdType; // Type of device (indexed or direct).
 ITabHandle gdITable; // Handle to inverse lookup table for Color Manager.
 short gdResPref; // Preferred resolution.
 SProcHndl gdSearchProc; // Handle to list of search functions.
 CProcHndl gdCompProc; // Handle to list of complement functions.
 short gdFlags; // Graphics device flags.
 PixMapHandle gdPMap; // Handle to pixel map for displayed image.
 long gdRefCon; // Reference value.
 Handle gdNextGD; // Handle to next GDevice structure.
 Rect gdRect; // Device's global boundaries.
 long gdMode; // Device's current mode.
 short gdCCBytes; // Width of expanded cursor data.
 short gdCCDepth; // Depth of expanded cursor data.
 Handle gdCCXData; // Handle to cursor's expanded data.
 Handle gdCCXMask; // Handle to cursor's expanded mask.
 long gdReserved; // (Reserved. Must be 0.)
};
typedef struct GDevice GDevice;
typedef GDevice *GDPtr, **GDHandle;

Main Field Descriptions
gdType The type of graphics device. The flag bits of this field are as follows:

Constant Bit Meaning If Set
clutType 0 CLUT device.
fixedType 1 Fixed CLUT device.
directType 2 Direct device.

gdITable Points to an inverse table. This is a special Color Manager data structure that allows index
numbers in a CLUT to be found very quickly.

gdFlags Device attributes (that is, whether the device is a screen, whether it is the main screen, whether
it is set to black-and-white or colour, whether it is the active device, etc.). The main flag bits
in this field are as follows:

Constant Bit Meaning If Set
gdDevType 0 Device is a colour device. (If not set, device is a black-and-white divice.)
mainScreen 11 Device is the main screen.
screenDevice 13 Device is a screen device.
screenActive 15 Device is current device.

gdPMap A handle to the pixel map (PixMap) structure.
gdNextGD A handle to the next device in the device list. Contains 0 if this is the last graphics device in

the device list.
gdRect The boundary rectangle of this graphics device. The upper-left corner of the boundary

rectangle for the main screen is set to (0,0) and all other graphics devices are relative to this.

QuickDraw Preliminaries Version 1.0 11-11

Setting a Device's Pixel Depth
The gdPMap field of the GDevice structure contains a handle to a PixMap structure which, in turn, contains the
PixelSize field to which is assigned the pixel depth of the device.
The user can change the pixel depth of video devices. Accordingly, although your application may have a
preferred pixel depth, it should be flexible enough to accommodate other pixel depths.
Your application can change the pixel depth using SetDepth. However, before calling this function, you
should call the HasDepth function to confirm that the hardware can support the desired pixel depth.
Generally speaking, you should not change pixel depth without first seeking the consent of the user via an
alert or dialog.

Other Graphics Managers
In addition to the QuickDraw functions, several other collections of system software functions are available
to assist you in drawing images.

Palette Manager
Your application can use the Palette Manager to provide more sophisticated colour support on indexed
graphics devices. The Palette Manager allows your application to specify sets of colours that it needs on a
window-by-window basis.

Color Picker Utilities
To solicit colour choices from users, your application can use the Color Picker Utilities. The Color Picker
Utilities also provide functions that allow your application to convert between colours specified in RGBColor
structures and colours specified for other colour models, such as the CMYK (cyan, magenta, yellow, black)
model used for many colour printers. (See Chapter 25.)

Coping With Multiple Monitors
Aspects of coping with a multiple monitors environment are addressed at Chapter 25.

11-12 Version 1.0 QuckDraw Preliminaries

Relevant QuickDraw Constants, Data Types, and
Functions

Constants
Flag Bits of gdType Field of GDevice Structure
clutType = 0
fixedType = 1
directType = 2

Flag Bits of gdFlags Field of GDevice Structure
gdDevType = 0
burstDevice = 7
ext32Device = 8
ramInit = 10
mainScreen = 11
allInit = 12
screenDevice = 13
noDriver = 14
screenActive = 15

Pixel Type
RGBDirect = 16 16 and 32 bits-per-pixel pixelType value.

Data Types
typedef struct OpaqueGrafPtr* GrafPtr;
typedef GrafPtr CGrafPtr;

Pixel Map
struct PixMap
{
 Ptr baseAddr; // Pointer to image data.
 short rowBytes; // Flags, and bytes in a row.
 Rect bounds; // Boundary rectangle.
 short pmVersion; // Pixel Map version number.
 short packType; // Packing format.
 long packSize; // Size of data in packed state.
 Fixed hRes; // Horizontal resolution in dots per inch.
 Fixed vRes; // Vertical resolution in dots per inch.
 short pixelType; // Format of pixel image.
 short pixelSize; // Physical bits per pixel.
 short cmpCount; // Number of components in each pixel.
 short cmpSize; // Number of bits in each component.
 long planeBytes; // Offset to next plane.
 CTabHandle pmTable; // Handle to a colour table for this image.
 long pmReserved; // (Reserved.)
};
typedef struct PixMap PixMap,*PixMapPtr,**PixMapHandle;

BitMap
struct BitMap
{
 Ptr baseAddr; // Pointer to bit image.
 short rowBytes; // Row width.
 Rect bounds; // Boundary rectangle.
};
typedef struct BitMap BitMap;
typedef BitMap *BitMapPtr, **BitMapHandle;

Pixel Pattern
struct PixPat
{
 short patType; // Type of pattern.
 PixMapHandle patMap; // The pattern's pixel map.
 Handle patData; // Pixel map's data.
 Handle patXData; // Expanded Pattern data (internal use).
 short patXValid; // Flags whether expanded Pattern valid.
 Handle patXMap; // Handle to expanded Pattern data (reserved).
 Pattern pat1Data; // Bit map's data.
};

QuickDraw Preliminaries Version 1.0 11-13

typedef struct PixPat PixPat;
typedef PixPat *PixPatPtr;
typedef PixPatPtr *PixPatHandle;

Pattern
struct Pattern
{
 UInt8 pat[8];
};
typedef struct Pattern Pattern;
typedef Pattern *PatPtr;
typedef PatPtr *PatHandle;

GDevice
struct GDevice
{
 short gdRefNum; // Reference Number of Driver.
 short gdID; // Client ID for search procedures.
 short gdType; // Type of device (indexed or direct).
 ITabHandle gdITable; // Handle to inverse lookup table for Color Manager.
 short gdResPref; // Preferred resolution.
 SProcHndl gdSearchProc; // Handle to list of search functions.
 CProcHndl gdCompProc; // Handle to list of complement functions.
 short gdFlags; // Graphics device flags.
 PixMapHandle gdPMap; // Handle to pixel map for displayed image.
 long gdRefCon; // Reference value.
 Handle gdNextGD; // Handle to next GDevice structure.
 Rect gdRect; // Device's global boundaries.
 long gdMode; // Device's current mode.
 short gdCCBytes; // Width of expanded cursor data.
 short gdCCDepth; // Depth of expanded cursor data.
 Handle gdCCXData; // Handle to cursor's expanded data.
 Handle gdCCXMask; // Handle to cursor's expanded mask.
 long gdReserved; // (Reserved. Must be 0.)
};
typedef struct GDevice GDevice;
typedef GDevice *GDPtr, **GDHandle;

Functions
Opening and Closing Graphics Ports
CgrafPtr CreateNewPort(void);
Void DisposePort(CGrafPtr port);

Saving and Restoring Graphics Ports
void GetPort(GrafPtr *port);
void SetPort(GrafPtr port);
void SetPortDialogPort(DialogPtr dialog);
void SetPortWindowPort(WindowRef window);

Getting a Pointer to the Owning Window
WindowRef GetWindowFromPort(CGrafPtr port);

Graphics Port Accessors
PixMapHandle GetPortPixMap(CGrafPtr port);
Rect GetPortBounds(CGrafPtr port,Rect *rect);
void SetPortBounds(CGrafPtr port,const Rect *rect);
RgnHandle GetPortVisibleRegion(CGrafPtr port,RgnHandle visRgn);
void SetPortVisibleRegion(CGrafPtr port,RgnHandle visRgn);
RgnHandle GetPortClipRegion(CGrafPtr port,RgnHandle clipRgn);
void SetPortClipRegion(CGrafPtr port,RgnHandle clipRgn);
void SetClip(RgnHandle rgn);
RGBColor GetPortForeColor(CGrafPtr port,RGBColor *foreColor);
void RGBForeColor(const RGBColor *color);
RGBColor GetPortBackColor(CGrafPtr port,RGBColor *backColor);
void RGBBackColor(const RGBColor *color);
PixPatHandle GetPortBackPixPat(CGrafPtr port,PixPatHandle backPattern);
void SetPortBackPixPat(CGrafPtr port,PixPatHandle backPattern);
void BackPat(const Pattern *pat);
PixPatHandle GetPortPenPixPat(CGrafPtr port,PixPatHandle penPattern);
void SetPortPenPixPat(CGrafPtr port,PixPatHandle penPattern);
void PenPat(const Pattern *pat);
PixPatHandle GetPortFillPixPat(CGrafPtr port,PixPatHandle fillPattern);
Point GetPortPenLocation(CGrafPtr port,Point *penLocation);
void MoveTo(short h,short v);

11-14 Version 1.0 QuckDraw Preliminaries

Point GetPortPenSize(CGrafPtr port,Point *penSize);
void SetPortPenSize(CGrafPtr port,Point penSize);
void PenSize(short width,short height);
SInt32 GetPortPenMode(CGrafPtr port);
void SetPortPenMode(CGrafPtr port,SInt32 penMode);
void PenMode(short mode);
short GetPortTextFont(CGrafPtr port);
void TextFont(short font);
void HidePen(void);
void ShowPen(void);
short GetPortPenVisibility(CGrafPtr port);
short GetPortTextSize(CGrafPtr port);
void TextSize(short size);
Style GetPortTextFace(CGrafPtr port);
void TextFace(StyleParameter face);
short GetPortTextMode(CGrafPtr port);
void TextMode(short mode)
RGBColor GetPortHiliteColor(CGrafPtr port,RGBColor *hiliteColor);

Creating, Setting, Disposing of, and Accessing Pixel Maps
PixMapHandle NewPixMap(void);
void CopyPixMap(PixMapHandle srcPM,PixMapHandle dstPM);
void SetPortPix(PixMapHandle pm);
void DisposePixMap(PixMapHandle pm);
Rect GetPixBounds(PixMapHandle pixMap,Rect *bounds);
short GetPixDepth(PixMapHandle pixMap);

Creating, Setting and Disposing of Graphics Device Structures
GDHandle NewGDevice(short refNum,long mode);
void InitGDevice(short qdRefNum,long mode,GDHandle gdh);
void SetDeviceAttribute(GDHandle gdh,short attribute,Boolean value);
void SetGDevice(GDHandle gd);
void DisposeGDevice(GDHandle gdh);

Getting the Available Graphics Devices
GDHandle GetGDevice(void);
GDHandle GetMainDevice(void);
GDHandle GetNextDevice(GDHandle curDevice);
GDHandle GetDeviceList(void);

Determining the Characteristics of a Video Device
Boolean TestDeviceAttribute(GDHandle gdh,short attribute);
void ScreenRes(short *scrnHRes,short *scrnVRes);

Changing the Pixel Depth of a Video Device
OSErr SetDepth(GDHandle gd,short depth,short whichFlags,short flags);
short HasDepth(GDHandle gd,short depth,short whichFlags,short flags);

QuickDraw Preliminaries Version 1.0 11-15

Demonstration Program PreQuickDraw Listing
// ***
// PreQuickDraw.c CLASSIC EVENT MODEL
// ***
//
// This program opens a window in which is displayed some information retrieved from the
// GDevice structure for the main video device, from the graphics port's pixel map, and from
// the graphics port object using QuickDraw functions.
//
// A Demonstration menu allows the user to set the monitor to various pixel depths and to
// restore the original pixel depth. Setting the monitor to a pixel depth of 8 (256 colours)
// or less causes the colours in the colour table to be displayed.
//
// The program utilises 'plst', 'MBAR', 'MENU', 'WIND', and 'STR#' resources, and a 'SIZE'
// resource with the acceptSuspendResumeEvents, canBackground, doesActivateOnFGSwitch, and
// isHighLevelEventAware flags set.
//
// ***

//
………
………………………………………………… includes

#include <Carbon.h>

//
………
…………………………………………………… defines

#define rMenubar 128
#define rWindow 128
#define mAppleApplication 128
#define iAbout 1
#define mFile 129
#define iQuit 12
#define mDemonstration 131
#define iSetDepth8 1
#define iSetDepth16 2
#define iSetDepth32 3
#define iRestoreStartDepth 5
#define rIndexedStrings 128
#define sMonitorInadequate 1
#define sMonitorAtThatDepth 2
#define sMonitorAtStartDepth 3
#define sRestoringMonitor 4
#define MAX_UINT32 0xFFFFFFFF

//
………
…………………………… global variables

Boolean gDone;
SInt16 gStartupPixelDepth;

//
………
…………………… function prototypes

void main (void);
void doPreliminaries (void);
OSErr quitAppEventHandler (AppleEvent *,AppleEvent *,SInt32);
void doEvents (EventRecord *);
void doDisplayInformation (WindowRef);
Boolean doCheckMonitor (void);
void doSetMonitorPixelDepth (SInt16);
void doRestoreMonitorPixelDepth (void);
void doMonitorAlert (Str255);

// ** main

void main(void)
{
 MenuBarHandle menubarHdl;
 SInt32 response;
 MenuRef menuRef;
 WindowRef windowRef;

11-16 Version 1.0 QuckDraw Preliminaries

 SInt16 entries = 0;
 Str255 theString;
 EventRecord EventStructure;

 //
………
……………………… do preliminaries

 doPreliminaries();

 //
………
set up menu bar and menus

 menubarHdl = GetNewMBar(rMenubar);
 if(menubarHdl == NULL)
 ExitToShell();
 SetMenuBar(menubarHdl);
 DrawMenuBar();

 Gestalt(gestaltMenuMgrAttr,&response);
 if(response & gestaltMenuMgrAquaLayoutMask)
 {
 menuRef = GetMenuRef(mFile);
 if(menuRef != NULL)
 {
 DeleteMenuItem(menuRef,iQuit);
 DeleteMenuItem(menuRef,iQuit - 1);
 DisableMenuItem(menuRef,0);
 }
 }

 // ………………………………………………………………………………………………… check if monitor can display at least 16-bit colour

 if(!doCheckMonitor())
 {
 GetIndString(theString,rIndexedStrings,sMonitorInadequate);
 doMonitorAlert(theString);
 }

 // …………………………………………………………………………………………………… open windows, set font, show windows, move
windows

 if(!(windowRef = GetNewCWindow(rWindow,NULL,(WindowRef)-1)))
 ExitToShell();

 SetPortWindowPort(windowRef);
 TextSize(10);

 //
………
………………………… enter eventLoop

 gDone = false;

 while(!gDone)
 {
 if(WaitNextEvent(everyEvent,&EventStructure,MAX_UINT32,NULL))
 doEvents(&EventStructure);
 }
}

// *** doPreliminaries

void doPreliminaries(void)
{
 OSErr osError;

 MoreMasterPointers(32);
 InitCursor();
 FlushEvents(everyEvent,0);

 osError = AEInstallEventHandler(kCoreEventClass,kAEQuitApplication,
 NewAEEventHandlerUPP((AEEventHandlerProcPtr) quitAppEventHandler),
 0L,false);
 if(osError != noErr)
 ExitToShell();
}

QuickDraw Preliminaries Version 1.0 11-17

// ** doQuitAppEvent

OSErr quitAppEventHandler(AppleEvent *appEvent,AppleEvent *reply,SInt32 handlerRefcon)
{
 OSErr osError;
 DescType returnedType;
 Size actualSize;

 osError = AEGetAttributePtr(appEvent,keyMissedKeywordAttr,typeWildCard,&returnedType,NULL,0,
 &actualSize);

 if(osError == errAEDescNotFound)
 {
 gDone = true;
 osError = noErr;
 }
 else if(osError == noErr)
 osError = errAEParamMissed;

 return osError;
}

// ** doEvents

void doEvents(EventRecord *eventStrucPtr)
{
 SInt32 menuChoice;
 MenuID menuID;
 MenuItemIndex menuItem;
 WindowPartCode partCode;
 WindowRef windowRef;
 Rect portRect;

 switch(eventStrucPtr->what)
 {
 case kHighLevelEvent:
 AEProcessAppleEvent(eventStrucPtr);
 break;

 case keyDown:
 if((eventStrucPtr->modifiers & cmdKey) != 0)
 {
 menuChoice = MenuEvent(eventStrucPtr);
 menuID = HiWord(menuChoice);
 menuItem = LoWord(menuChoice);
 if(menuID == mFile && menuItem == iQuit)
 gDone = true;
 }
 break;

 case mouseDown:
 if(partCode = FindWindow(eventStrucPtr->where,&windowRef))
 {
 switch(partCode)
 {
 case inMenuBar:
 menuChoice = MenuSelect(eventStrucPtr->where);
 menuID = HiWord(menuChoice);
 menuItem = LoWord(menuChoice);

 if(menuID == 0)
 return;

 switch(menuID)
 {
 case mAppleApplication:
 if(menuItem == iAbout)
 SysBeep(10);
 break;

 case mFile:
 if(menuItem == iQuit)
 gDone = true;
 break;

 case mDemonstration:
 if(menuItem == iSetDepth8)
 doSetMonitorPixelDepth(8);
 else if(menuItem == iSetDepth16)

11-18 Version 1.0 QuckDraw Preliminaries

 doSetMonitorPixelDepth(16);
 else if(menuItem == iSetDepth32)
 doSetMonitorPixelDepth(32);
 else if(menuItem == iRestoreStartDepth)
 doRestoreMonitorPixelDepth();
 break;
 }
 HiliteMenu(0);
 break;

 case inDrag:
 DragWindow(windowRef,eventStrucPtr->where,NULL);
 GetWindowPortBounds(windowRef,&portRect);
 InvalWindowRect(windowRef,&portRect);
 break;
 }
 }
 break;

 case updateEvt:
 windowRef = (WindowRef) eventStrucPtr->message;
 BeginUpdate(windowRef);
 SetPortWindowPort(windowRef);
 doDisplayInformation(windowRef);
 EndUpdate(windowRef);
 break;
 }
}

// ** doDisplayInformation

void doDisplayInformation(WindowRef windowRef)
{
 RGBColor whiteColour = { 0xFFFF, 0xFFFF, 0xFFFF };
 RGBColor blueColour = { 0x3333, 0x3333, 0x9999 };
 Rect portRect;
 GDHandle deviceHdl;
 SInt16 videoDeviceCount = 0;
 Str255 theString;
 SInt16 deviceType, pixelDepth, bytesPerRow;
 Rect theRect;
 GrafPtr grafPort;
 PixMapHandle pixMapHdl;
 CTabHandle colorTableHdl;
 SInt16 entries = 0, vert = 28, horiz = 250, index = 0;
 RGBColor getPixelColour,colourTableColour;

 RGBForeColor(&whiteColour);
 RGBBackColor(&blueColour);
 GetWindowPortBounds(windowRef,&portRect);
 EraseRect(&portRect);
 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);

 //
………
………………………… Get Device List

 deviceHdl = GetDeviceList();

 // .. count video devices in device list

 while(deviceHdl != NULL)
 {
 if(TestDeviceAttribute(deviceHdl,screenDevice))
 videoDeviceCount ++;

 deviceHdl = GetNextDevice(deviceHdl);
 }

 NumToString(videoDeviceCount,theString);
 MoveTo(10,20);
 DrawString(theString);
 if(videoDeviceCount < 2)
 DrawString("\p video device in the device list.");
 else
 DrawString("\p video devices in the device list.");

QuickDraw Preliminaries Version 1.0 11-19

 //
………
………………………… Get Main Device

 deviceHdl = GetMainDevice();

 // ... determine device type

 MoveTo(10,35);

 if(((1 << gdDevType) & (*deviceHdl)->gdFlags) != 0)
 DrawString("\pThe main video device is a colour device.");
 else
 DrawString("\pThe main video device is a monochrome device.");

 MoveTo(10,50);
 deviceType = (*deviceHdl)->gdType;
 switch(deviceType)
 {
 case clutType:
 DrawString("\pIt is an indexed device with variable CLUT.");
 break;

 case fixedType:
 DrawString("\pIt is is an indexed device with fixed CLUT.");
 break;

 case directType:
 DrawString("\pIt is a direct device.");
 break;
 }

 //
………
…… Get Handle to Pixel Map

 grafPort = GetWindowPort(windowRef);
 pixMapHdl = GetPortPixMap(grafPort);
 // pixMapHdl = (*deviceHdl)->gdPMap; // alternative method

 // ... get and display pixel depth

 MoveTo(10,70);
 DrawString("\pPixel depth = ");

 pixelDepth = GetPixDepth(pixMapHdl);
 // pixelDepth = (*(*deviceHdl)->gdPMap)->pixelSize; // alternative method

 NumToString(pixelDepth,theString);
 DrawString(theString);

 // ... get and display bytes per row

 MoveTo(10,90);
 bytesPerRow = (*pixMapHdl)->rowBytes & 0x7FFF;
 DrawString("\pBytes per row = ");
 NumToString(bytesPerRow,theString);
 DrawString(theString);

 // …… Get Device's Global
Boundary Rectangle

 theRect = (*deviceHdl)->gdRect;

 // ... calculate and display total pixel image bytes

 MoveTo(10,105);
 DrawString("\pTotal pixel image bytes = ");
 NumToString(bytesPerRow * theRect.bottom,theString);
 DrawString(theString);

 // ... display device's boundary rectangle

 MoveTo(10,130);
 TextFace(bold);
 DrawString("\pGraphics Device's Boundary Rectangle");
 TextFace(normal);
 MoveTo(10,145);
 DrawString("\p(gdRect field of GDevice structure)");

11-20 Version 1.0 QuckDraw Preliminaries

 MoveTo(10,160);
 DrawString("\pBoundary rectangle top = ");
 NumToString(theRect.top,theString);
 DrawString(theString);

 MoveTo(10,175);
 DrawString("\pBoundary rectangle left = ");
 NumToString(theRect.left,theString);
 DrawString(theString);

 MoveTo(10,190);
 DrawString("\pBoundary rectangle bottom = ");
 NumToString(theRect.bottom,theString);
 DrawString(theString);

 MoveTo(10,205);
 DrawString("\pBoundary rectangle right = ");
 NumToString(theRect.right,theString);
 DrawString(theString);

 // …… Get and Display Pixel Map's Boundary
Rectangle

 GetPixBounds(pixMapHdl,&theRect);

 MoveTo(10,225);
 TextFace(bold);
 DrawString("\pPixel Map's Boundary Rectangle");
 TextFace(normal);
 MoveTo(10,240);
 DrawString("\p(bounds field of PixMap structure)");

 MoveTo(10,255);
 DrawString("\pBoundary rectangle top = ");
 NumToString(theRect.top,theString);
 DrawString(theString);

 MoveTo(10,270);
 DrawString("\pBoundary rectangle left = ");
 NumToString(theRect.left,theString);
 DrawString(theString);

 MoveTo(10,285);
 DrawString("\pBoundary rectangle bottom = ");
 NumToString(theRect.bottom,theString);
 DrawString(theString);

 MoveTo(10,300);
 DrawString("\pBoundary rectangle right = ");
 NumToString(theRect.right,theString);
 DrawString(theString);

 MoveTo(10,320);
 DrawString("\pOn Mac OS X, drag window after pixel depth and screen resolution changes to");
 DrawString("\p ensure that");
 MoveTo(10,333);
 DrawString("\pbytes per row, pixel image bytes, and colour values are updated.");

 // ……………………………………………………………………… Get and Display RGB Components of Requested Background Colour

 MoveTo(250,255);
 GetBackColor(&blueColour);
 DrawString("\pRequested background colour (rgb) = ");
 MoveTo(250,270);
 NumToString(blueColour.red,theString);
 DrawString(theString);
 DrawString("\p ");
 NumToString(blueColour.green,theString);
 DrawString(theString);
 DrawString("\p ");
 NumToString(blueColour.blue,theString);
 DrawString(theString);

 // …………………… If Direct Device, Get and Display RGB Components of Colour Returned by GetCPixel

 if(deviceType == directType)
 {
 MoveTo(250,285);

QuickDraw Preliminaries Version 1.0 11-21

 GetCPixel(10,10,&getPixelColour);
 DrawString("\pColour returned by CetCPixel (rgb) = ");
 MoveTo(250,300);
 NumToString(getPixelColour.red,theString);
 DrawString(theString);
 DrawString("\p ");
 NumToString(getPixelColour.green,theString);
 DrawString(theString);
 DrawString("\p ");
 NumToString(getPixelColour.blue,theString);
 DrawString(theString);
 }

 // .. else prepare to display colour table index

 else
 {
 MoveTo(250,285);
 DrawString("\pBackground colour (colour table index):");
 }

 // ……
Get Handle to Colour Table

 colorTableHdl = (*pixMapHdl)->pmTable;

 // .. if any entries in colour table, draw the colours

 MoveTo(250,20);
 DrawString("\pColour table:");

 entries = (*colorTableHdl)->ctSize;

 if(entries < 2)
 {
 MoveTo(260,100);
 DrawString("\pOnly one (dummy) entry in the colour");
 MoveTo(260,115);
 DrawString("\ptable. To cause the colour table to be");
 MoveTo(260,130);
 DrawString("\pbuilt, set the monitor to bit depth 8");
 MoveTo(260,145);
 DrawString("\p(256 colours), causing it to act like ");
 MoveTo(260,160);
 DrawString("\pan indexed device.");
 SetRect(&theRect,250,28,458,236);
 FrameRect(&theRect);
 }

 for(index = 0;index <= entries;index++)
 {
 SetRect(&theRect,horiz,vert,horiz+12,vert+12);
 colourTableColour = (*colorTableHdl)->ctTable[index].rgb;
 RGBForeColor(&colourTableColour);
 PaintRect(&theRect);

 // also, if device is not a direct device, and current colour matches background ...

 if(deviceType == clutType || deviceType == fixedType)
 {
 if(colourTableColour.red == blueColour.red &&
 colourTableColour.green == blueColour.green &&
 colourTableColour.blue == blueColour.blue)
 {

 // outline the drawn colour and display the colour table index

 RGBForeColor(&whiteColour);
 InsetRect(&theRect,-1,-1);
 FrameRect(&theRect);
 MoveTo(250,300);
 NumToString(index,theString);
 DrawString(theString);
 }
 }

 horiz += 13;
 if(horiz > 445)
 {

11-22 Version 1.0 QuckDraw Preliminaries

 horiz = 250;
 vert += 13;
 }
 }

 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
}

// ** doCheckMonitor

Boolean doCheckMonitor(void)
{
 GDHandle mainDeviceHdl;

 mainDeviceHdl = GetMainDevice();

 if(!(HasDepth(mainDeviceHdl,16,gdDevType,1)))
 {
 DisableMenuItem(GetMenuRef(mDemonstration),0);
 return false;
 }
 else
 {
 gStartupPixelDepth = (**((**mainDeviceHdl).gdPMap)).pixelSize;
 return true;
 }
}

// ** doSetMonitorPixelDepth

void doSetMonitorPixelDepth(SInt16 requiredDepth)
{
 GDHandle mainDeviceHdl;
 Str255 alertString;
 SInt16 currentPixelDepth;

 mainDeviceHdl = GetMainDevice();
 currentPixelDepth = (**((**mainDeviceHdl).gdPMap)).pixelSize;

 if(currentPixelDepth != requiredDepth)
 {
 SetDepth(mainDeviceHdl,requiredDepth,gdDevType,1);
 }
 else
 {
 GetIndString(alertString,rIndexedStrings,sMonitorAtThatDepth);
 doMonitorAlert(alertString);
 }
}

// ** doRestoreMonitorPixelDepth

void doRestoreMonitorPixelDepth(void)
{
 GDHandle mainDeviceHdl;
 Str255 alertString;
 SInt16 pixelDepth;

 mainDeviceHdl = GetMainDevice();
 pixelDepth = (**((**mainDeviceHdl).gdPMap)).pixelSize;

 if(pixelDepth != gStartupPixelDepth)
 {
 GetIndString(alertString,rIndexedStrings,sRestoringMonitor);
 doMonitorAlert(alertString);
 SetDepth(mainDeviceHdl,gStartupPixelDepth,gdDevType,1);
 }
 else
 {
 GetIndString(alertString,rIndexedStrings,sMonitorAtStartDepth);
 doMonitorAlert(alertString);
 }
}

// ** doMonitorAlert

void doMonitorAlert(Str255 labelText)
{
 SInt16 itemHit;

QuickDraw Preliminaries Version 1.0 11-23

 StandardAlert(kAlertNoteAlert,labelText,NULL,NULL,&itemHit);
}

// ***

11-24 Version 1.0 QuckDraw Preliminaries

Demonstration Program PreQuickDraw Comments
When this program is run, the user should:

• Drag the window to various positions on the main screen, noting, on Mac OS 8/9 only, the changes to the coordinates of
the pixel map's boundary rectangle. (On Mac OS X these coordinates represent the bounds of the Core Graphics window
that backs the Carbon window, not the screen.)

• Change between the available monitor resolutions, noting the changes in the bytes per row and total pixel image bytes
figures displayed in the window.

• Using the Demonstration menu, change between the available pixel depths, noting the changes to the pixel depth and
total pixel image bytes figures, and the background colour values, displayed in the window.

• Note that, when a pixel depth of 8 is set on a direct device, the device creates a CLUT and operates like a direct device. In
this case, the background colour value is the colour table entry (index), and the relevant colour in the colour table display
is framed in white.

On Mac OS 8/9, if the user's monitor is set to thousands or millions of colours when the program is run for the first time, the
colour table will not be built. It will be built when the user first sets the pixel depth to 8 (256 colours).

main
The call to doCheckMonitor determines whether the monitor can support a pixel depth of at least 16. If it cannot, the
Demonstration menu is disabled, false is returned, and an alert is displayed advising the user that the Demonstration menu
will be unavailable. If the monitor can support a pixel depth of at least 16, the current pixel depth is assigned to the global
variable gStartupPixelDepth.

doEvents
In the case of a mouse-down event, in the inDrag case, when the user releases the mouse button, the window is invalidated,
causing it to be redrawn.

doDisplayInformation
At the first two lines, RGB colours are assigned to the window's graphics port's rgbFgColor and rgbBkColor fields. The call to
EraseRect causes the content region to be filled with the background colour.

Get Device List
The call to GetDeviceList gets a handle to the first GDevice structure in the device list. The device list is then "walked" in the
while loop. For every video device found in the list, the variable videoDeviceCount is incremented. GetNextDevice gets a
handle to the next device in the device list.

Get Main Device
GetMainDevice gets a handle to the startup device, that is, the device on which the menu bar appears.

Following the call to MoveTo, the gdDevType bit is tested to determine whether the main (startup) device is a colour or black-
and-white device.

In the next block, the gdType field of the GDevice structure is examined to determine whether the device is an indexed device
with a variable CLUT, an indexed device with a fixed CLUT, or a direct device (or a direct device set to display 256 colours or
less and, as a consequence, acting like an indexed device).

Get Handle to Pixel Map
The call to GetWindowPort gets the reference to the window's graphics port required by the call to GetPortPixMap.
GetPortPixMap gets a handle to the pixel map. (The following line shows an alternative method of obtaining a handle to a pixel
map, in this case from the GDevice structure.)

In the next block, GetPixDepth is called to get the pixel depth. (The following line shows an alternative method of obtaining
the pixel depth, in this case from the GDevice structure.)

At the next block, the number of bytes in each row in the pixel map is determined. (The high bit in the rowBytes field of the
PixMap structure is a flag which indicates whether the data structure is a PixMap structure or a BitMap structure.)

Get Device's Boundary Rectangle
At the first line of this block, the device's boundary rectangle is extracted from the GDevice structure's gdRect field.

At the next block, the bytes per row value is multiplied by the height of the boundary rectangle to arrive at the total number
of bytes in the pixel image.

The boundary rectangle's top, left, bottom, and right coordinates are then drawn in the window.

Get and Display Pixel Map's Boundary Rectangle
The call to GetPixBounds gets the pixel map's bounding rectangle. The rectangle's top, left, bottom, and right coordinates are
then drawn in the window.

QuickDraw Preliminaries Version 1.0 11-25

Get and Display RGB Components of Requested Background Colour
The second line of this block calls GetBackColor to get the graphics port's background colour. The red, green, and blue values
are then printed in the window.

If Direct Device, Get and Display RGB Components of Colour Returned by GetCPixel
If the device is a direct device, GetCPixel is called to get the colour of a pixel in the window drawn with the background colour.
The red, green and blue values are then printed in the window.

If the device is not a direct device, some preparatory text is drawn in the window.

Get Handle To Colour Table
The first and fourth lines get a handle to the colour table in the GDevice structure's pixel map and the number of entries in
that table. (Note that the ctSize field of the ColorTable structure contains the number of table entries minus one.)

On Mac OS 8/9, QuickDraw only calls the Color Manager to build the colour table if the device is an indexed device (or a direct
device acting as an indexed device). Thus, on Mac OS 8/9, there will only be a dummy entry in the colour table unless the
monitor is an indexed device or a direct divice set to display 256 colours or less.

The final block paints small coloured rectangles for each entry in the colour table. If the main device is an indexed device (or
if it is a direct device set to display 256 colours or less), the colour table entry being used as the best match for the requested
background colour is outlined in white and the index value is drawn.

doCheckMonitor
doCheckMonitor is called at program start to determine whether the main device supports at least 16-bit colour and, if it does,
to assign the main device's pixel depth at startup to the global variable gStartupPixelDepth.

The call to GetMainDevice gets a handle to the main device's GDevice structure. The function HasDepth is used to determine
whether the device supports at least 16-bit colour. If it does not, the Demonstration menu is disabled and false is returned. If
it does, the pixel depth is extracted from the pixelSize field of the PixMap structure in the GDevice structure and assigned to
the global variable gStartupPixelDepth.

doSetMonitorPixelDepth
doSetMonitorPixelDepth is called when one of the the first three items in the Demonstration menu is chosen.

If the current pixel depth determined at the first two lines is not equal to the required new depth, SetDepth is called to set the
main device's pixel depth to the required depth.
If the current pixel depth is equal to the required pixel depth, an alert is displayed advising the user that the device is
currently set to that pixel depth.

doRestoreMonitorPixelDepth
doRestoreMonitorPixelDepth is called, when the last item in the Demonstration menu is chosen, to reset the main device's
pixel depth to the startup pixel depth.

If the current pixel depth determined at the first two lines is not equal to the startup pixel depth, a string is retrieved from a
'STR#' resource and passed to the function doMonitorAlert, which displays a movable modal alert box advising the user that
the monitor's bit depth is about to be changed to the startup pixel depth. When the user dismisses the alert box, SetDepth
sets the main device's pixel depth to the startup pixel depth.

If the current pixel depth is the startup pixel depth, the last two lines display an alert box advising the user that the device is
currently set to that pixel depth.

11-26 Version 1.0 QuckDraw Preliminaries

	QUICKDRAW PRELIMINARIES
	Demonstration Program: PreQuickDraw
	QuickDraw and Imaging
	RGB Colours and Pixels
	Colour and the Video Device
	The video device that controls a screen may have either:
	Indexed Colour Devices
	Direct Colour Devices
	Direct Devices Operating Like Indexed Devices

	Graphics Port
	The information in a graphics port is maintained by QuickDraw.
	Accessor Functions
	Pixel Maps
	Field Descriptions
	Functions

	Carbon introduced the following functions relating to pixel maps:
	Pixel Patterns and Bit Patterns
	Pixel Patterns

	The graphics port object stores handles to pixel patterns, structures of type PixPat.
	Bit Patterns
	Creating Graphics Ports

	Translation of RGB Colours to Pixel Values
	Derivation of Pixel Values on Indexed Devices

	Fig 9 shows the translation of an RGBColor structure to an 8-bit pixel value on an indexed device.
	Derivation of Pixel Values on Direct Devices
	Colours on Grayscale Screens

	Graphics Devices and GDevice Structures
	Types of Graphics Device

	A graphics device is anything QuickDraw can draw into. There are three types of graphics device:
	GDevice Structure
	Main Field Descriptions

	Setting a Device's Pixel Depth

	Other Graphics Managers
	Palette Manager
	Color Picker Utilities

	Coping With Multiple Monitors
	Relevant QuickDraw Constants, Data Types, and Functions
	Constants
	Flag Bits of gdType Field of GDevice Structure
	Flag Bits of gdFlags Field of GDevice Structure
	Pixel Type

	Data Types
	Pixel Map
	BitMap
	Pixel Pattern
	Pattern
	GDevice

	Functions
	Opening and Closing Graphics Ports
	Saving and Restoring Graphics Ports
	Getting a Pointer to the Owning Window
	Graphics Port Accessors
	Creating, Setting, Disposing of, and Accessing Pixel Maps
	Creating, Setting and Disposing of Graphics Device Structures
	Getting the Available Graphics Devices
	Determining the Characteristics of a Video Device
	Changing the Pixel Depth of a Video Device

	Demonstration Program PreQuickDraw Listing
	Demonstration Program PreQuickDraw Comments
	main
	doEvents
	doDisplayInformation
	Get Device List
	Get Main Device
	Get Handle to Pixel Map

	In the next block, GetPixDepth is called to get the pixel depth. (The following line shows an alternative method of obtaining the pixel depth, in this case from the GDevice structure.)
	Get Device's Boundary Rectangle
	Get and Display Pixel Map's Boundary Rectangle
	Get and Display RGB Components of Requested Background Colour
	If Direct Device, Get and Display RGB Components of Colour Returned by GetCPixel
	Get Handle To Colour Table
	doCheckMonitor
	doSetMonitorPixelDepth
	doRestoreMonitorPixelDepth

